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Abstract
A model ;called ruie uNoLo model' peinnits

cognitive sail. acc;u::Tition, diagnosing cognitive errors, detecting the
weaknesses and strengths of knowledge possessed by individuals was
introduced earlier. This study further discusses the theoretical foundation
of the model by introducing "bug distributton" and hypothesis testing (Bayes'

decision rules for minimum errors) for classifying an individual into
his /her most plausible latent state of knowledge. The model is illustrated
with the domain of fraction arithmetic and compared with the results
obtained from a conventional artificial intelligence approach.



Diagnosis of Cognitive Errors

3

Ackno.4.clecigerner its

The acthcro wcold I.', to ,_.l',: o' Mr. .7\-, Paillie for -mg
several c_h-p,.ter ,iictis.sion-c ounce: mho
research.

This research was sponsored by the Personnel ,nd 'Training, Research
Program, Psychological Sciences Division, Office Naval Research.

Some of the analyses presented In this report were performed on the
PLATO® system. The PLATO® system is a development of the University of
Illinois and PLATO® is a service mark of the Control Data Corporation.

4



Int 1'0 11 ictio

Diagnosis of Cognitive Errors

com!--rInfliv u5e0 in Artirinial Intel:

4

been applied to deveLop pi J.err,-solving prng,flan-1_,, 'systems.

These methods Have successfdlly diagnosed h,:ndreds, of erroneous rules of operation

in several domains of arithmetic, algebra, and some areas of science. The results

of such error analyses have contributed to our current understanding of human

thinking and reasoning.

These approaches, however, fail to take the variability of response errors into

account, and also depend on a specific model of problem solving. Therefore,

they often cannot diagnose responses affected by random errors (sometimes called

"slips") or produced by innovative thinking that is not taken into account by the

current models It is very difficult to develop a computer program whose underlying

algorithms for solving a problem represents a wide range of indiv Jai differences.

Yet, when these diagnostic systems are used in educational practice, they must be

capable of evaluating any responses on test-items, including inconsistent

performances and those yielded by creative thinking. Recent developments in

cognitive psychclogy and science point out that a student keeps testing his/her

hypothesis and evaluating it until learning advances. As stated by VanLehn (1983),

"If they are unsuccessful in an attempt to apply a procedure to a problem they are

not apt to just quit, as a computer program does. Instead they will be inventive,

invoking certain general purpose tactics to change their current process state in such

a way that they can continue the procedure" (p.10). Birenbaum and Tatsuoka (1986)

showed that inconsistent and volatile applications of rules in signed-number

arithmetic it. a common phenomenon among nonmasters. Since the 1960's

psychometric:a -is have developed probabilistic models to measure latent traits.

5
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As stated by H. V'S);' (1 two C13`,S3PS of latent stucture

models have been 'es:es have I- t-'r2r1 calle(4, CJntintiur-r1 models and

211( He c.-ntinuarn, models, trait acquisition is ass,k_Irned to he

COrit.17-1UOUS lil nature..., \:.,hereas for state models, trait acquisition is perceives aS

an `all -or -core' srocess." Paulson (198S) extended the line of research in latent

state models to explain erroneous rules of operation in signed-number arithmetic in

which each rule is treated as a discrete state. Some basic assumptions in the state

:vocals are: firs,, one must decide how may latent classes or states the model has.

Secondly, every subject must belong to exactly one of a finite set of latent classes

which, ere mutually exclusive and exhaustive. Despite recent developments in

methods of estimating parameters (Goodman, 1975; Paulson, .935), probabilistic

explanation of volatile changes in the applications of rules is very difficult by

state mod_l approacnes. Moreover, it is extremely difficult to take all students'

performances on a test into account in a single model, e.specially when several

different methods are available to solve a given set of problems. Therefore, we need

a model that is cap-)able of diagnosing non-systematic cognitive errors and is also

capable of evaluating nonconventional problem-solving activities.

Tatsuoka and her associates (Tatsuoka, 1985, 1984b; Tatsuoka & Linn, 1983;

Tatsuoka & Tatsuoka, 1983, 1982) have developed such a model called rule space and

have successfully applied it to diagnose misconceptions possessed by students in

signed-number and fraction arithmetic. The model maps all response patterns into a

set of ordered pairs comprising the latent ability variable 0 and one of the IRT-

based caution indices (C) introduced by Tatsuoka (1984b). However, the approach

used in their model lacks, somehow, a sound statistical foundation in expressing

The simulation study by Tatsuoka and Baillie (1982) showed that thr, response
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..-roceuurJ, main f,rrn VC1--"Nr, he

found ern p :ly ,fld T -iota cr--) hose

response patterns in the elruster foilow ao --:-)r-o,Imate multivariate normal

distribution. This cluster around a rule is called e "bug clic;thibut.on" hereafter. The

theoretical foundation of this empirical find.r:g di:.,-,cussed :n this paper.

7 nirst,a brief rca'nilistic model introduced in Tatsuoka t 1985)

will be given. Then the connection of each "bug distr'bution to this model will be

d :scossed in conjunction with the theory of statistical pattern classification and

r-ecognition.

Distribution of Responses around an Erroneous Rule

The term "rule" is used loosely, without a precise definition. Tatsuoka

and Tatsuoka (1986) say "A rule is a description of a set of procedures or

operations that one can use in solving a problem in some well-define I procedural

domain such as arithmetic, algebra and the 1:ke." A rIght ruie(s) is defined as a rule

that produces the right answer to every item in a test, but an erroneous

rule may fortuitously yield the right answer for some subset of the items. A

logical analysis of cognitive tasks identifying subtasks for solving the problems

correctly, investigating possible solution paths and constructing a subtask tree or

process network for a well-defined procedural domain -is often an important

prerequisite to developing a cognitive error-diagnostic test. However, theoretical

foundations of dealing with such relational databases can be found elsewhere

Reingold, Nievergelt and Deo, 1979; Lee, 1983), and they are not our main

concerns in this paper. So we here assume that a set of erroneous rules or sources

of misconceptions one wishes to diagnose is given a priori. Indeed it is possible to

7
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ole yields it= response

pattern :7) t;-) the to-st :terns. unit o seer (-an he t' 1;.7';,/,-'1-

subproce-i,se:3 .) Some ruies are combinations of ti-e right rule and wrong rules,

while others are combinations of various wrong rules. For e>,ample, suppose a 40-

item fraction subtraction test contains items requiring borrowing and those that do

not. If a student increases the numerator by 10 instead of adding the denominator

when borrowing, then his answer will most likely be wrong for the items requiring

borrowing but correct for those not requiring borrowing. Therefore, this rule-

referred to as Rule 3 latercorresponds to the response pattern of for the

borrowing iterres and cries fur the non-borrowing items. The set of rules in a study is

by no means a oomplete list of rules. Indeed, we will show that some responses are

impossible to diagnose.

The responses around a particular rule of operation in a procedural cloInain which

are produced by not-perfectly-consistent applications of the owe to the test items

forma cluster. They include responses that deviate?, in various degrees, from the

response generated by the rule. When these discrepancies are observed, they are

considered as random errors. These random errors are called "slips by cognitive

scientists (Brown & VanLehn, 1980). The properties of such responses around a

given erroneous rule will be investigated in this section.

First, the probability of having a "slip" on item j (j=1,2,...,n) is assumed to

have the same value, p, for all items and it will be called "slip probability" in this

paper. Let us denote an arbitrary rule for which the total score is r by Rule R and

let the corresponding response pattern be:

8
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r + 1

.

e response paterns existing one slip away from Rule are of two kinds: a

of "one to zero' occurring at 1 < = r and "zero to one" at r n. The

number of response patterns having one slin is therefore (IT) (nor) (r)(11-.11. and0

the probability of having one slip on item J(j=1,...,n) given by (r ) ( --p) 1(nol

po n r (ro) p0 (1_0- (n-r1
k / P' (1-p)

1

if the Probability n is the same for

all items, j=1,...,n. Therefore the following equation (2) is obtained:

(2) Prcb (x, 1 for some j=-1,...,r or x + 1 for some j=r+1,...,n) =

Prot-) having a slip on an item) = )1 (1)(nol + (n-tr) pi (1-p)n-1

Similarly, the probability of having k slips on the items is given by as Follows:

9
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The gerera'irig ftincti-h `' the distributIcin frc_qt:encie$ tip to k -s will ie

given by Equation (3) as follows:

( n 1--,
_

{ n-s2. 1-ro) 0-aving UD to k SIDS) = z p \ i- ni .

_h Si

Therefore, a cluster around Rule R which consists of res9c- se natter-5 including

various numbers of slips ;not-perfectly-consistent, applications- of Rule R) has a

probability distribtition of the binomial form if all items have the same

probability p. if, on the other hand, we assume each item to nave an unique siip

probability, then the binomial distribution expressed by Equation (3) will become a

compound binomial distribution, Equation (4).

k in
Prob (having up to k slips) = Trp (1-p,

x,sk
Before an approximation of the slip probabilities, p is discussed, the rule-space

concept will be briefly introduced in the next section.

A Brief Summary of the Probabilistic Model, Rule Space

One of the purposes of the model, the rule space, is to interpret semantically the

relationships among various erroneous rules and the right rule, and compare the

characteristics of each rule to the right rule or other rule. An analogy for the

underlying motivation of seeking d norm-referenced characteristic of "bug behavior"

may be found in the theory and practice of norm-referenced tests. This starts by

JJ

10
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y to

narrn. y he "-,'Ligs" as_

kisept:on,-7 are

,related and transformed from are nothe:- plained more clearly than by

just describing the list of bugs.

The rule space model begins by mapping all possible binary response patterns

into a set of ordered pairs { (0, ;)}, where 6 is the latent ability variable in item

response theory (if-\)T) and ; (or ;( : ;)) is one of the IRT-based caution indices
. A r)a.5L.ut\d, Linn, 1983). The mapping runction I (x ) is expressed

as an :niter product of two residual vectors, 1--) (e) A and P (6) T (,9) where

Pi (e), j =1 ,...,n are the one- or two-parameter logistic-model probabilities, x is a

binary response ve(_tor end T (0) Is the mean vector of the logistic probabilities.

f(x ) is a linear mapping function between x and ; at a given level of 0, and the

response patterns having the same sufficient statistics for the maximum likelihood

estimate 6 of 6 are dispersed into different locations on the line of 6 = 6. For

example, on a 100-item test, there are 4950 different response patterns having the

total score of 2. The cs for the 4950 binary patterns will be distributed between

;min and ;max where ;min is obtained from the pattern having 1 for the two easiest

items and zeros elsewhere, and ;max is from the pattern having 1 fors the two most

difficult items. f (x ) has the expectation zero and variance s P i6) Q (6) (P 0
=1

T(6))2 (Tatsuoka, 1985). Since the expectation of the random var])ble x (j= 1,...,n)

is P (6) , the expectation of a vector x is P (6) whose nth component is P. (6). The

vector P (6) will be mapped to zero as shown in (5), thus the pattern corresponds to

(6,0) in the rule spy ce.

(5) f (P (u) ) = 0

1
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) ') ) . in-' is

)(P. (0 -1-(e R )) .R

lar,y, the response vectors resulting from several sups around rule R
.

will be mapped in the vicinity of (ep ,f(1)) in the rule space and form a cluster
(called the cluster around R hereafter).

The two variables 0 and f (\) are mutually uhcorrelatea] so them covariance

matrix has a diagonal form as f0110',VS;

var jC,

I

var(f (x))

1/I ;0)

where 1(0) is the information function of the test and Is given apboxirrately by
2z.a P (0) Q (0) where the a (J =1 ,...,n) are item discriminating powers.

Let us map all response patterns of the test, including clusters around various

rules into the Cartesian product space of 0 and f(x), where

(8) f(x) = (P (0) , (e) T(0)) ,P (0) T(0))

In particular, Rule R itself will be mapped as

(9) R = x (65 ))R '

where f (R) is given by Equation The variance of the :ustei around i will be

12
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e , p

t;)

ine Lidancities p and are associated wit- lime as Weil as with item j, and their

values are unhrown.

Slip probabilities

Suppose p is t' probability .,f item p 77-1 H for Jr I. Then, the

probability :ons-r,-y function olu,tor io Rale R he a compound binomial

:ustr:butior. ---.he con ::t:onal orocab:1ty that x , the resport-7e to item j, is not equal
J

to the -,`,`-1 element of :::ule ::-\) , but 1 will be either P (0) or Q (0)R , 1 J
1 i ,,

riependir, on wheth-r the jth eleMent x in R is corn or one, respectively. That is
'r.

(11) Prob
R 0)

--J

,Frob (x3 =

`Prob =

(fin`)
I -FY

0 ( ) = R,

ifxR =0

=1

Therefore, the slip probability of item i will be expressed by the logistic function

P (0) whose parameters are estimated from a sample. The compound binomial

distribution of the cluster around Rule R is given by the terms of the expansion of

expression (12), and the mean and variance by Equation, (13) and (14) because the

complement of the slip probability is the conditional probability c: correct responses

given Rule R.

n
(12) g(R) 11

j
P (OR) + Qj (0 R))

J=1

r n
(13) NR -= P (t) R) + 'Z. Q (0,0,)

J=1 j=r+1

13
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;C:' , _ ny,

the mapping function, f(), the centroid and cova,-1:1:-:::e -t-Htriv will be

equations ( 1 fh and (1 (3) , respectively.

Var in the cluster around R) P, (6)Q,(0) (Pi (C) T(s))

The variarre of clu3t-r, on °Her by the rei-1nrocal 1 i /1(e)

of the inforrnatiun function

(_ 6) Var. (0 in the cluster around R)

The above two var ,des, along with the fact that c and C are uncorrelated, plus

the reasonable assumption that they have a bivariate normal distribution, allow us to

construct any desired percent ellipse around each rule point R. The upshot is that, if

all erroneous rules (and `'-e correct one) were to no mapped into the rule space along

with their neighboring response patterns representing random slips from them, the

resulting topography would be someLhing like what is seen in Figure 1. That is, the

population of points would exhibit modal densities at r any rule points that each

forms the center of an enveloping ellipse with the density of points getting rarer as

we depart farther from the center in any direction. Furthermore, the major and

minor axes of these ellipses would by virtue of the uncorrelatedness of and 0

be parallel to the vertical and hori-zontal (0) reference axe ; of the rule space,

respect

Insert Figure 1 about here

14
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H i-e

r
(r (0) Tho' ),' - ,

,-)--

we may assert that the set of elipses gi\,es c-7_11

space. By this :s meant t'-iot, once j-s(-2 ellipses are given, any response-pattern

points can Le classifie 1:Neiv being a random slip Hem one cr another of the

erroneous rules. ;or the correct one). We l,av'e oul to letor,n17H Sr 'A si_:Itable

percent value, WOlOS one of the sercd ellipses un:q.or,, 15010 iee tho poin:.

C't ---,If:cation Scheme

The geometric scheme outlined above for classify _snonse-nattern

point as being a "perturbation" from one or another f the 1-'1e points has a certain

intuitive appeal (especially to those with high spatial ability!). However, it is

obviously difficult if not infeasible to put it into practice. We therefore now

describe the als2ebraio equiv-a' nt of the foregoing geGni,ArIc clissif:ca`,;on

rule, which is none other than the well-known mini:run-1-D rule, where D2 is

Mahalanobis" generalised squared-distance (Fukunaga, 1972; Tatsuoka, 1971). Then

the Bayes' decision rule for minimum error will he discussed in He contet of the

rule space.

Without loss of generality, \i/( may suppose that a given response pattern point x

has to be classified as representing a random slip from one of two rule points R and

Let X be u oi .t in the rule space corresponding to
LtSL

estimated M3halanobis oistance of X from each of the two rule points na

1.
10
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(17)

where :\
1

W1 '11,.

al , and the \variance-covariance matrix

L

vac (f ()

The decision rule io, of course, classify pertul-Hrion from RI ifti

x 1
< and otherwise as a perturbation from R,y . !However, the decision based

on the Mahalanonis distai,ces, D- and D-7 does not provide error probabilities of
xl )(z

misclassification. The next section will discuss them.

The Bayes Decision Rule for Minurnum Errol

Suppose RI and R7 are two ciooters of points corresponding to Rules 1 and 2,

respectively.

Let Prob (R1) and Prob (R7) be prior probabilities of the rules R1 and R7,

p (Y IR1), 1=-1,2 be the conditional density function of Y given Rr. Then, Bayes'

decision rule is as summarized in Equation (18).

(18) If p(Y R 1) Prob (RI) > p (Y R2 Prob (R2) then Y

Otherwise, Y E

Sometimes, :t is convenient to take the negative log of the likelihood ratio in

Expression (18) dnd rewrite it as Expression (IT.

16
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The pro'Dability of error is t procaoi,y will s'signed to the

group, R1.

Let us denote the posterior density function by P(R, I Y) and let F and F7 be
the :-.2gior,, such that if Y c Fi then P (R I Y) > P (R2 I `1') and kf F-, thenti

TT)
I I \')

The probability of error is given by the following equation:

(20) E Provo ( Y t --,I +--I R1) (R, ) Prob(Y c F1 R- P (R-.) .

Let denote the probability of Y belonging to F when v :rorn , then.

(21) E1 PrOb (\i' E F2 R1)

Cr

I p('' I R1) dY,

Similarly, the probability of Y belonging to Fi when Y is from R2, E will be

(22) E = PI-05(Y E ri R2) =
F1

p(_ I R2) dY .

Then expression (20) can be rewritten as E E1P (R1) 4- E 2P ,P (R ) or more

precisely,

(23) E = P(R1) i p(y RI) dY + P(R2)

i7

p (Y dY .

F
1
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t: nor

probability E. The din enmDnuiity of the cond.tiona density function is often more

than one, while the density function p(,Q R ) of the likelihood ratio is one

dimensional so it is sometimes convenient to integrate the latter (Fukunaga, 1972).

Hence, Equations (24) and (25) are used to obtain the error probabilities, E1 and t2;

(1,--) , )

-CO

2,15) E, =
) P (R2)/ P (R)

i1
) d.Q

If the density function pcY R1) is normal with expectations Nliand covariance

matrices 2". , then Equation (19) will become Equation (25).
(25) if h (Y) = -In ) (Y)

(Y ) (Y

4

In

P(R1)
In

> P (R2)

-M ) 1 (Y M1L.
Y C R,

YE R2

If Zi = E2 = then h (Y) becomes a linear function of Y and the decision rule has

the following form if Y follows a normal distribution:

18
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I.-, \ \
1 1

\

R,

thm, Y E

' A 1

error probability E is given by,

(28)

a)

t
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1

4,N4
1

N? 1 ti `M

(Qa

1-1(\x") R , ) dh(Y) =

t-i--q

o-

t +77 \ Tr

n[F(R 1)/P(R7)]

-I -7evT)

where t = In p (R1) p (R7) and (.) is the unit normal distribution. The

conditional expectation of the iiKelihood function h(Y) is given by (29) and (30),

(29) E (h (Y) R1) = -1/2 (Y2 (M
2 M

1
) = -q-'

(30) E(h(Y) R2) = +1/2 (M2 MI)/ z I (M2 MI)

and the variance of h(Y) is given by Equation (31):

19
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IN I , X':

rl si 1

) R ) dh(Y) = 1
CT

Illustration of the model with an example

A 40-item fraction subtr action test was given to 535 st'Hents at a local junior
hi'ah, school. A computer pr og,ram adopting, a deterministic strategy for diagnosing

ecroneo'Js rules f c.er,_=.ition in subtrautInF, two -r-,-ictiors w3'3 developed on the

7P--ATO system. 'I -he students' per:ormances on tt-e. test were analyzed by the error'

diagnostic program and summarized by Tats,..loka In order to illustrate the

rule space model and the decision rule described in the previous section, two very

common erroneous rules (Thtsuoka, 19345) are chosen to explain the model.

Rule 8. This rule is applicable to any fraction or mixed number. A student

subtracts the smaller from the larger number in 'unequal corresponding parts and
keeps correspord:-Ig equal parts as is in the answer. D.amples are,

4-112

2. 3 47
3.

-7
1^

2
--I __

J. ,_.,

3 :3 _3
4 13- 4

Rule 30. This rule is applicable to the subtraction of mixed numbers where the

first numerator is smaller than the second numerator. A student reduces the whole-

number part of the minuend by one and adds nn. to the tens digit of the numerator.

20
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1

3 4 13 9_
5

These two rules are applied to 40 items and two sets of responses are scored by

the "rig,I,t or ,rrong scoring procedure. The binary score pattern made by Rule is

denoted by and the other made by DC denetej R-30
7:',E-;ides the two rules mentioned above, 38 diii-Terert err a,r types are identified by

'ask analysis. How,_ver, these error types do not necessarily repre-o,ont microlevels

at cognitive processes such as erroneous rules of operation. They are, somehow,

defined more coarseiy, like borrowing errors being grouped as a single error type, or

the combiration of borrowing and getting the least common multiple of two

denominators being counted as one error type. In other wor ds, 33 binary response

patterns representing 38 error types are obtained.

The 535 students' responses on the 40 items are scored and used for estimating

item parameters a and b by the maximum likelihood procedure. By using these a-
J

and b-values, e-va.ues associated with the two rules and 38 error types are

computed. Then the corresponding c-values are calculated Thus, 40 points, (0k,ck),
k=1,...,40 are plotted in the rule space (Rule 8 is renumbered to 39 and Rule 30 to

40. It is only a coincidence that the number of rules equals the rule number.)

Insert Table 1 about here

Now, two students A and B who used Rules 8 and 30 for a subset of 40 items are

selected. This was possible because their performances are diagnosed independently

21
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distances, 0-, are selected to compute probabilities of errors. Table 2 summarizes

the results.

Insert Table 2 & Figure 2 about here

2
71- _219 vaiues cf Sta-lc'nt A to 7,ts 40 and 19 are 0.008 and 0.119,

respectively, and 'Loth the. values are small enough to Judge that A may be classified
2to eithor of the sets. `~.'ice D foliown the )C-distribution with two degrees of

freedom (Tatsuoka, 1971) the null hypotheses that 0' a 0 and(A,Set -10)

(A,Set 19) E 0 cannot `be rejected at, say a -z= .25. The error probabilites E, andFl-

E2 are .581 and .266, respectively. Therefore, we conclude A belongs to Set 19,

even though D'(A,set is smaller than D2 (A,Set 19) . This is because the prior

probability of Frob (Set 40) is much smaller than that of Frob (Set 19) where the

threshold value, t, is determined as follows:

and

t [ Prob (Set 40) //Prob (Set 19)

Prot: (Set k) oc (1/27) exp [ -10k ,;k) Lk
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Discussion

A new probabilistic :"1 0(3,1 tH,3t is Yule of

3CCiL.11:_;itIori, and of dia,,--1,nosing erroneous rules of opt-a-n,tion in a proc.-:-_jur-,1 domain

was introduced by Tatsuoka and her associates (Tatsuok3, 1935; Tatsuoka Bai llie,

1983; Tatsuoka Tatsuoka, 1982; Tatsuoka, 1933; Tatsuoka, 193'4a). The model,

called rule space, involves two important components: 11 determinati-,n of a set of

rules to be diagnosed, or in other words, conditional density functrm 3 representing

clusters around the rules, and 2) establishment of decision rules for classifying an

observed response pattern into one of the clusters around the rules and computing

error probabilities. If each cluster around a role can be described by a bivariate

normal distribution of 0 and c, the application of the techniquos a'All..11,i,ble in Lie

theory of ,statistical classification and pattern recognition is fairly straightforward.

With regards to the first component, a list of rules IS supplied independently from

parameter estimation of the Item Response Theory model'a. Diagnoses of stuients'

responses to the items are performed by classifying them into one of the bug

distributions if possible, and if not possible then left for future investigation as

to searching a cause of misclassification. Determination of the list of the rules will

be discussed in a future paper.

This study introduces the fact that the oluster around the rule consisting of the

response patterns resulting from ore, two,..., several slips away from perfect

application of the rule indeed follows a compound binomial distribution with centroid

(OR , ;R) and variance p q , where p is the probaLlity of having aFt
slip from Rule R for item j. The values of p and q are replaced by the logistic1-

probabilites P (0 ) and (0), 3=1,...,n, estimated from the dataset

23
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nneous rule

, fit with

_.pse.- representing c. tern around the rules can

he automatic after all the erroneous rules are discovered. Many researchers in

cognitive science and artificial intelligence have started constructing error diagnostic

systems in various domains in this decade. Expert teachers usually know their

students' errors, as well as the weaknesses and strengths of each child's knowledge

structure. Since the model does not require a large-scaie computation such as

.-itrategies com:nonly used :n the area of artificial intelligence do, the rule-spac-

_n mare general areas of research and teaching, and for those who

have microcomputers for testing their hypotheses, validating their data with

probabilistically sound information, and evaluating their teaching methods and

materials. Moreover, the model can be intelligent" m the sense that the researcher

can imprcve and modify the information for the cluster ellipses as they get more

new students whose performances they can study.

The set of ellipses can represent many things besides erroneous rules. They can

represent specific contents of some domain, usage errors in the langauge arts, or

processes required in algebra. However, further research is necessary to develop

methods for determining the set of ellipses other than relying on an expert teacher.

The method must be efficient and compatible with recent theories of human cognition

and learning.

24



Di4,nosis of Cognitive Errors

24

References

Alvord, Vaci-ead,,

models. Applie'_'. P372 .(1)1C

Birenbaurn, M., & Tatsuoka, K. K. (1986). On the sta5ility of '7tucH

operation for solving arithmetic problems (Technical Report 86 -ONR) . Urbana,

IL: University of Illinois, Computer-based Education Research Laboratory.

Brown, J. S., & VanLehn, K. (1980). Repair Theory: A generative theory of hugs

in procedural skills. Cognitive Science, 1

Firkunaga, K. (1972). Introduction to '7.-tat'.3tical pattern r,-co:nit.nn.

Academic Press.

Goodman, L. A. (197,3 ) . A new model for '7c7Iling response pdtterr,s: An

application of he quasi independence concept. ...fourprY. of the American

Statistical Association, 70, 755-768.

Klein, M., Birenbaum, M., Standiford, S., 3 Tatsuoka, K. K. (1931). Logical error

analysis and construction of tests to diagnose student 'bugs' with addition and

sutraction of fractions (Technical Report 81-6). Urbana, IL: University of

Illinois, Computer-based Education Research Laboratory.

Lee, T. T. (1983). An algebraic theory of relational databases. Tr Bell System

Technical Journal, 62, 10, 3161-3128.

Paulson, J. A. (1985). Latent class representation of systematic patterns in test

responses (ONR research report). Portland: Portland State University.

Reingold, E. M., Nievergelt, J., & Deo, N. (1977). Combinatorial algorithms,

theory and practice. Englewood Cliffs, NJ: Prentice-Hall.



,

K.

Diagnosis of Cognitive Errors

25

Lased on lC1r, recner "-urn- , . ,rr,

Tjtsuoi,' a, N. K. (E:_i.) error :e and

subtraction, nroniemis (Final Report for Grant No. NIF.-G-31-0002). Urbana, IL:
Tl,University of eorr-Iput, used Education Research Laboratory.

To'stioka, K. K. (1984B). Cautroh indices based 7in ite'n response theory.

Psychornetrika, 9, 95-110.
' ,Tatsuoka, K. 4 aK. ,85). A pronacilistio mode, for oiagnoo 'N.' misconceptions by the

pattern cio:;51:ication approach. journal of Educational Statistics, 10, 1, 55-73.

Totsuoka, M. M. (1971. Multivariate analysis: Techniques for Lducational and

ps,v(_sholoi_,,ical research. NY: John Wiley a Sons.

Tatsuoka, K. K., & Baillie, R. (1982). Rule 5pace, the product space of two score

components in signed-number subtraction: An approach to dealing with inconsistent

use of erroneous rules (Technical Report 82-3-0NR). Urbana, IL: University of

:limo's, Computer -based Education Research Laboratory.

Tatsuoka, K. K., & Linn, R. L. (1983). Indices for detecting unusual response

patterns: Links between two general approaches and potential applications.

Applied Psychological Measurement, 7, 1, 81-96.

Tatsuoka, K. K., & Tatsuoka, M. M. (1932). Detection of aberrant reponse patterns.

Journal of Educational Statistics, 7, 3, 215-231.

Tatsuoka, K. K., & Tatsuoka, M. M. (1983). Spotting erroneous rules of operation by

the individual consistency index. Journal of Educational Measurement, 20, 3,

221 -230.



1,1,, ,i,'\.-). V. V.

Ci

,

Diagnosis of Cognitive Errors

26



A

Diagnosis of Cognitive Errors

Table 1

The 40 Centroids ReEresentill 40 different error types 1, Fraction

Subtraction Tests iN 535, n n ,0)

Group 8 4 No. of

Items

Group 8 4 No. of

Items

1 -2,69 -.80 1 21 .24 -.89 22

2 -1.22 -.69 4 22 -.22 -1,23 14

3 -.75 -.68 8 23 .62 -1.55 32

4 -.46 .75 10 24 1,04 -.61 38

5 .11 .91 18 25 .75 -,05 34

6 .64 1.74 30 26 -.51 -1.62 10

7 -.17 1.48 13 27 -.87 -.56 6

8 .40 -.16 25 28 -1.99 1.01 2

9 .60 -.43 31 29 -.19 1.53 12

10 .57 -.24 29 30 - -4 2.74 10

11 .99 .:2 37 31 -1.18 1.46 4

12 1.19 .86 39 32 -1.45 .58 4

13 -.60 -1.58 10 33 .64 1.74 30

14 -.44 -2.31 12 34 .57 -.66 31

15 -.18 .67 14 35 X59 -1.39 30

16 -.08 -1.81 16 36 -1.66 -1.96 4

17 .16 -.86 20 37 -.52 -.94 10

18 -.01 -2.12 18 38 -.32 -1.26 14

19 .09 -2.26 20 39 -.41 -2.57 13

20 .29 -1.51 24 40 .17 -2.34 22

*These items will have the score of 1, otherwise the score will be O.

2
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Table 2

Summary_ of Classificction Results rf Students A end 8

Student A Student B

D2

El

E2

rl

t

,2 2

°, Set 40 .00B DB, Set 39 .021

,2 2

°, Set 19 .119 DBE Set 14 '135

.581 .979

.266 .010

.088 .040

-.174 -.614
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Figure 1: Fifteen Ellipses Representing Fifteen Error Types Randomly
Chosen From Forty Sets of Ellipses


